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Abstract— Visual place recognition (VPR) is critical in not
only localization and mapping for autonomous driving vehi-
cles, but also assistive navigation for the visually impaired
population. To enable a long-term VPR system on a large
scale, several challenges need to be addressed. First, different
applications could require different image view directions, such
as front views for self-driving cars while side views for the
low vision people. Second, VPR in metropolitan scenes can
often cause privacy concerns due to the imaging of pedestrian
and vehicle identity information, calling for the need for data
anonymization before VPR queries and database construction.
Both factors could lead to VPR performance variations that
are not well understood yet. To study their influences, we
present the NYU-VPR dataset that contains more than 200,000
images over a 2km×2km area near the New York University
campus, taken within the whole year of 2016. We present
benchmark results on several popular VPR algorithms showing
that side views are significantly more challenging for current
VPR methods while the influence of data anonymization is
almost negligible, together with our hypothetical explanations
and in-depth analysis.

I. INTRODUCTION

Visual place recognition (VPR) is the process of retrieving
the most similar images for a query one from a database
of images with known camera poses, which is often used
for loop closing in mapping, localization, and navigation. It
relies on representing an image as a global feature vector
which describes the portion of the image appearance that
is most relevant to its capturing pose. Its applications range
from autonomous driving for vehicles, to assistive navigation
for the visually impaired people, especially in busy and
crowded metropolitan areas where GPS could suffer from the
“urban canyon” problem when satellite signals are blocked
or multi-reflected to cause large localization errors.

A reliable large-scale and long-term VPR system has to
address several challenges. The first one is to choose a proper
image view direction, assuming a non-omnidirectional cam-
era which is commonly available on smartphones unlike
panoramic cameras. In a self-driving car scenario, using
front-view images from a dash-mounted camera whose view
direction is parallel to the driving/street direction is almost
a default choice. In fact, most VPR methods have been
investigated and evaluated under such front-view conditions,
where features of roads, shapes of skylines, and textures of
the roadside buildings can all contribute to describing and
discriminating various image locations.
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Fig. 1. Top-1 VPR retrieval accuracy of 4 baseline algorithms under
different view directions and data anonymization.

Yet not all downstream applications prefer front-view
images. For example, a person with low vision might need
image-based wearable navigation assistance to find the en-
trance of a particular shop on the street. The aforementioned
front-view images typically contain more than half of the
pixels on the road and the sky while the remaining pixels on
street sides that are far away from the image capturing loca-
tions. Contrarily, the side view offers fronto-parallel images
of buildings along streets, which stores enough information
required for such an application scenario.

However, currently, there is a lack of datasets that could
evaluate VPR methods specifically on side-view images in
comparison with front-view ones. Many datasets contain
no side-view images or mix them with front-view images
without explicit labels (see Table I). Moreover, as far as
we know, there is no systematic comparison of VPR perfor-
mance between images from the two view directions. Thus,
the following questions remain unclear: are side-view images
more challenging for VPR than front-view ones? And if so,
why? And how much is the performance difference?

Another challenge for large-scale VPR systems is data
privacy, receiving an increasing attention from the commu-
nity [12]. Building such systems in large metropolitan areas
requires collecting images for a long term, inevitably creating
concerns of both violating the privacy of the identity informa-
tion of individual pedestrians and vehicles, and potentially
even leaking their spatial-temporal trajectories. Unlike the
privacy-preserving technique in [12] that still operates on
raw images, another way could be directly anonymizing the
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TABLE I
COMPARISON OF MAJOR PUBLIC OUTDOOR VPR DATASETS WITH NYU-VPR.

Dataset side-view side-view-label dynamic-object crowded-area anonymization seasonal-changes #images
StreetLearn [1] X - X X 7 7 143,000
StreetView [2] X - X X 7 7 62,058
Nordland [3] 7 - 7 7 7 X 28,865
VPRiCE 2015 [4] 7 - X 7 7 7 7,778
Tokyo 24/7 [5] X 7 X X face-only 7 76,000
Pittsburgh [6] X 7 X 7 7 X 254,064
KITTI raw [7] 7 - X 7 7 7 12,919
KAIST [8] 7 - X 7 7 7 105,000
Oxford RobotCar [9] 7 - X 7 7 X 19,556,490
Mapillary [10] X X X X 7 X 1,681,000
NCLT [11] 7 - X 7 7 X 100,000
NYU-VPR(ours) X X X X X X 201,790

images by wiping out all the identity-related pixels (see
Figure 3). However, this again brings some unanswered ques-
tions for VPR: would such data anonymization significantly
affects the performance of existing VPR algorithms? If so,
does it increase or decrease the VPR accuracy/robustness?

This paper aims at filling the gaps by a new VPR dataset
and benchmark. This is a year-long dataset captured outdoors
by vehicles with front-view and side-view cameras traveling
in a metropolitan area recording more than 200,000 GPS-
tagged images. This allows us to answer the above questions
by comparing the results under various conditions.

The contributions of this paper are as follows:
• We present NYU-VPR, a unique large-scale, year-long,

outdoor VPR benchmark dataset containing both front-
view and side-view GPS-tagged images taken at differ-
ent lighting conditions with seasonal and appearance
changes in a busy and crowded urban area of New
York City. This dataset and our benchmark code will
be released for educational and research purposes.

• We benchmark the performance of several popular VPR
algorithms with a focus on the influence of image view
directions. As far as we know, this is the first work to
systematically demonstrate and analyze the causes of
the significant challenge of VPR with side-view images.

• We anonymize the identity information in this dataset
by removing pixels of both pedestrians and vehicles
to address the privacy concerns of large-scale VPR in
urban scenes. This is also the first result to show that all
the benchmarked VPR algorithms are only marginally
affected by this anonymization.

II. RELATED WORK

Because NYU-VPR contains only outdoor images used
for visual place recognition, we review publicly available
datasets that have similar characteristics. The main differ-
ences between those datasets and our proposed dataset are
summarized in Table I.

Side-view and side-view label: In recent years there has
been substantial growth in the number of visual place recog-
nition datasets in the urban areas. However, most datasets
only contain front-view images, gathered by cameras on
the front and back of cars [3, 4, 7–9, 11]. The side-view
images featuring the storefront and sidewalk are not included.
Few datasets include the side-view images in addition to the

front-view images. For example, the images in Tokyo 24/7
dataset were gathered by pedestrians’ phones and featured
both front-view and side-view images [5]. The images in
Pittsburgh dataset were perspective images generated from
Google Street View panoramas of the Pittsburgh area [6].
But those datasets do not label the images as front-view or
side-view. Thus no work can use those datasets to compare
the visual place recognition results on the side-view images
versus those on the front-view images. NYU-VPR contains
images labeled as front-view and images labeled as side-
view. We focus on evaluating the visual place recognition
algorithms in both categories. We compare the results of
algorithms on the side-view images versus the results on the
front-view images in order to analyze the influence of view
direction on the long-term visual place recognition.

Dynamic objects, crowded-area and anonymization:
Dynamic objects such as pedestrians and vehicles in images
may affect the performance of visual place recognition due
to the changing appearance at the same place or the existence
of obstructing the street view. Besides, the presence of pedes-
trians and vehicles in publicly available datasets may raise
privacy issues if images are not anonymized. There are few
appearances of dynamic objects in datasets of images gath-
ered in suburban areas. For example, Nordland is a dataset of
images taken on the train on a railway line between the cities
of Trondheim and Bodø [3]. In contrast, dynamic objects
appears much more frequently in the datasets featuring urban
areas [4–10]. We define crowded areas as metropolitan areas
such as New York City and Tokyo that has a high population
density and is crowded with pedestrians and vehicles. In
Table I, images from Tokyo 24/7, Mapillary, and NYU-VPR
are gathered in crowded areas. Anonymization is needed on
those datasets for privacy protection. Tokyo 24/7 only applied
face redaction on pedestrians [5], while Mapillary did not
apply any anonymization [10]. We use MSeg [13] to replace
pedestrians and vehicles with white pixels.

Seasonal changes: Matching images that are taken at the
same location in different seasons is crucial for long-term
visual place recognition. This is because objects on images
change with the seasons: new storefront, trees withering,
constructions finished, etc. In Table I, Pittsburgh [6] includes
images in different seasons but few image locations are
visited in all four seasons. Nordland, Oxford RobotCar [9],
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(a) 4 locations (row) at 4 seasons. (b) Month/hour distributions.

Fig. 2. Dataset visualization of NYU-VPR w.r.t. the image capturing time.

NCLT [11], and Mapillary [10] all include images in four
seasons for most locations. NYU-VPR is similar but tempo-
rally denser: most locations are visited more than once every
month, as shown by the time (Fig. 2(b)) and space (Fig. 4(f)
and Fig. 4(e)) distributions of images. So NYU-VPR can be
used to evaluate long-term visual place recognition for the
influence of seasonal changes.

Baseline methods: Current VPR methods can be roughly
grouped into three categories: deep-learning methods, non-
deep-learning methods, and methods that only use deep
learning descriptors. We select methods in each category.
Deep learning methods [14–17] use a convolutional neural
networks (CNN) and train CNN in an end-to-end manner
directly. We select NetVLAD [14] and PoseNet [15] in
this group. For non-deep-learning methods [5, 18–20], two
classical ones are bag-of-words (BoW) model and Vector of
Locally Aggregated Descriptors (VLAD). In this group, we
choose DBoW+ORB [18, 21], which was used in the popular
ORB-SLAM for loop closing [22], and VLAD+SURF [19,
23], which was used in [24]. Methods that only use deep
learning descriptors take advantage of deep nets’ ability to
detect a richer set of key points, such as SuperPoint [25]
which we also adopted.

III. THE NYU-VPR DATASET

Our dataset is named NYU-VPR. It contains images
recorded in Manhattan, New York from May 2016 to March
2017. The images were recorded with GPS tags by smart-
phone cameras installed on the front, back, and side parts
of (undisclosed) fleet cars with auto-exposure1. The dataset
contains both side-view images and front-view images. There
are 100,500 side-view and 101,290 front-view raw images,
each with a 640 × 480 resolution. On the basis of raw
images, we use MSeg [13], a semantic segmentation method,
to replace moving objects such as people and cars with white
pixels. Fig. 3 compares anonymized and raw images.

Fig. 3. Raw images vs. Anonymized images.
The images were recorded on streets around Washington

Square Park. The trajectories of the locations where the
images were recorded are shown in Fig. 4(d). Since the

1The raw data was sampled from a larger dataset provided by Carmera.

cameras were placed on fleet cars, and their routes were
random, the frequencies of locations where the images were
taken are different. The frequencies of the locations where
the side-view and front-view images were recorded are
shown in Fig. 4(f) and Fig. 4(e) respectively.

Fig. 2(b) shows the time distribution. Since it contains
images captured from May 2016 to March 2017, our dataset
includes all four seasons. Therefore, it contains various
changes of weather, illumination, vegetation, and road con-
struction. As shown in Fig. 2(a), we can see image changes
at the same location as the season changes.

Difficulty Level: We assign each side-view query image
a difficulty level of easy, medium, or hard. First, we extract
SIFT [26] features for each image. Then for each query
image, we find the top-8 closest side-view training images
by GPS coordinates. The query image and its top-8 closest
images form eight image pairs. We use RANSAC to compute
a fundamental matrix and the number of inliers for each pair
of images. We use three intervals to measure the difficulty
level of matching each pair based on each pair’s number
of inliers points: 0-19 (hard), 20-80 (medium), >80 (easy).
The interval values are determined by artificially viewing the
image pairs and checking the similarity of the image pairs.
The difficulty level of each side-view query image is the
most common difficulty level of its eight pairs.

Uniqueness: Our dataset is unique in two ways. First,
comparing to front-view images where sky and road surfaces
occupy large areas, side-view images focus on street views
such as shop signs and metro entrances. Second, we include
image anonymization to protect the privacy of pedestrians
and cars. In the meantime, anonymized images provide VPR
algorithms static and environment-only information, getting
rid of moving objects and pedestrians.

Front-view vs. Side-view: We hypothesize that side-view
images are more challenging than front-view images for
existing VPR methods, based on several theoretical reasons
and observations. First, as illustrated in Fig. 5(a), since the
images were taken on a moving vehicle at a low frequency,
the overlap of two sequential side-view images would only
occupy a limited part of the whole image. In contrast, the
overlap of two sequential front-view images occupies more
space. Furthermore, if the road is narrow and stores are very
close to the vehicle, the spatial area covered in the side-view
image is less than that covered in the front-view image at
the same location. Besides, trees may impact the success rate
for side-view images because trees will block features such
as banners and entrances. Most trees look the same and thus
may cause the uncertainty of localization.

Another important reason is that images are taken on a
moving vehicle, suffering from motion blur. When the spatial
area coverage of side-view images is less than front-view
images, the motion blur effect is more serious on side-view
images. We set a threshold for the variance of Laplacian to
detect the blurriness of an image2. The result in Fig. 5(b)

2https://www.pyimagesearch.com/2015/09/07/blur-
detection-with-opencv/
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(a) During vs. After construction. (b) Summer vs. Winter. (c) Without vs. With motion blur.

(d) Image GPS locations. (e) Frequency of front-view images. (f) Frequency of side-view images.

Fig. 4. Dataset visualization of NYU-VPR with respect to the image capturing location. The locations of (a)-(c) are highlighted in (d).

(a) Sequential view overlaps. (b) Percentage of blurry images.

Fig. 5. Further explanation and illustration of our dataset.

right shows that side-view images have a larger percentage
of blurry images than front-view images. We think blurry
images are more challenging for VPR and we will analyze
the relationship further in the experiment section.

Other Challenges: In addition to the side-view images,
there are several other challenges in our dataset. Because our
dataset is one-year long, the images taken at the same loca-
tion have artificial or natural differences. First, Fig. 4(a) left
was taken in October 2016 with sideway constructions and
the right was taken in December 2016 after the construction.
At some locations, the construction may cover the whole
image. Second, different seasons cause different appearances
at the same location. Fig. 4(b) left was taken in summer,
July 2016, and the right was taken in winter, January 2017.
In this case, the vegetation in Washington Square Park had
changed a lot and snow was covering the ground in winter.
Furthermore, if the vehicle was moving fast, the images taken
by the vehicle will be blurry (Fig. 4(c)). Although two images
were taken at the same location, the blurry one will cause
more difficulty during VPR.

IV. BENCHMARK EXPERIMENTS

A. Settings

We selected five classical as well as state-of-the-art de-
scriptors and methods for evaluation of visual place recog-
nition performance on the NYU-VPR dataset.

Dataset: We randomly split both front-view and side-view
images into training, validation and testing sections by 80%,
5%, and 15% respectively. For each view direction, both
anonymized and raw images share the same split result. All
images are resized to 640×480. We also use Python module
utm to convert GPS coordinates to UTM coordinates for
more precise distance calculation between two locations.

VLAD+SURF: We use Vector of Locally Aggregated
Descriptors(VLAD) [19] to aggregate speeded up robust fea-
tures (SURF) [23] descriptors for image retrieval. Through
experiments, we find the optimal cluster number is 32 within
8, 16, 32, and 64, by using MiniBatchKmeans with batch
size at 5000. This cluster number gives high accuracy and
acceptable training time. The training of 77608 images took
about 8 hours on CPU with 64 GB available memory.

VLAD+SuperPoint: We use SuperPoint model pre-
trained on MS-COCO generic image dataset [25]. We use
nVidia RTX 2080S to extract SuperPoint features. Then we
use VLAD to aggregate SuperPoint descriptors for image
retrieval. We set the cluster number at 32, just as we do in
VLAD+SURF, by using MiniBatchKmeans with batch size
at 100. Notice the dimension of SuperPoint descriptors is
larger than the dimension of SURF descriptors. The training
of 77608 images took about 20 hours on CPU and GPU with
64 GB available memory.

NetVLAD: We directly use the pre-trained model weight
for 30 epochs on Pittsburgh-250k datasets [6] to com-
plete our testing. For the hardware, the CPU we adapt is
Intel R© CoreTM i7-8700k, and the GPU we use is NVIDIA
GEFORCE GTX 1080 TI. We first complete an initial
clustering on training data to find out the centroids used for
the testing process. The input testing data with the extracted
deep feature are assigned to different clusters afterward. The
batch size during testing is 24.

PoseNet: We use PoseNet model with ResNet34 as the
base architecture [15]. For training, PoseNet requires the
Cartesian coordinates of images as input besides images
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themselves. So we gather latitude and longitude information
of training images from the camera. We convert latitude and
longitude to universal transverse mercator (UTM) coordi-
nates to improve the accuracy of PoseNet’s estimation of
images’ relative position. We use images with normalized
UTM coordinates as the input to PoseNet. The GPU we use
is NVIDIA GEFORCE RTX 2080S. The batch size during
training is 32. For testing, PoseNet outputs the estimation
of normalized UTM coordinates of the query images, which
are used for evaluation.

DBoW: We use Distributed Bag of Words (DBoW)
model3. We choose Oriented FAST and Rotated BRIEF
(ORB) [21] descriptors for representing features. We use
DBoW to generate a vocabulary constructed by ORB descrip-
tors of training and test images. For testing, We generate the
top-5 retrieval images by using DBoW3 to generate a score
between each training and test images and selecting the top-
5 scores for each test image. We run the testing process with
multi-thread for efficiency.

Evaluation: Following [24], we measure both top-1 and
top-5 retrieval accuracy under four distance thresholds (5,
10, 15, 20 meters). If any of the top-k retrieval images are
within the range of the distance from the query image, we
count it as a successful retrieval. The top-k ranking is based
on the similarity between image features calculated by VPR
algorithms. In essence, this evaluation metric is similar to
the more common precision-recall curve.

B. Results

Figure 6(a) shows our main results focused on the perfor-
mance of non-/anonymized front-/side-view datasets, show-
ing the influence of anonymization and view directions.

Performance: Fig. 1 and Fig. 6(a) shows the result of our
experiments. Obviously, the result of the top 5 retrieval image
accuracy is higher than the top 1 retrieval image accuracy,
with an average 10% higher. And when using VLAD to
aggregate descriptors, the result of SuperPoint descriptors is
much more accurate than the result of SURF descriptors. In
both two figures, the accuracy of NetVLAD is the highest,
followed by VLAD+SuperPoint and VLAD+SURF. The last
is the DBoW method. We may attribute the low accuracy
of DBoW to the unsustainability of ORB features. PoseNet
outputs a GPS coordinate and using that coordinate we
can find the closest top 1 retrieval image, and through
experiments, the accuracy of PoseNet is 15.3% and 37.5%
when the distance threshold is 5 and 10 meters respectively.
Due to the low performance of PoseNet, we omit it in other
experiments and do not plot the results. We also calculate the
accuracy in terms of difficulty level as mentioned before.
Fig. 6(b) shows the result of top 5 retrieval in different
difficulty level. The visual result is shown in Fig 7. Clearly,
we can see VLAD+SuperPoint has better performance than
VLAD+SURF and DBoW.

Anonymization: From Fig. 1, we can draw the conclusion
that the anonymization does not have a large impact on the

3https://github.com/rmsalinas/DBow3

(a) Top-5 retrieval results.

(b) Top-5 retrieval results in terms of difficulty level.

Fig. 6. Main results of the benchmark.

visual place recognition result, either of front-view dataset
or side-view dataset. The anonymization, however, has little
influence on the accuracy of some methods. For example,
VLAD+SuperPoint gets 1.1% increase on average, while
DBoW and VLAD+SURF have around 2.1% and 3.4%
decrease on average respectively. Therefore, when doing
experiments on visual place recognition, we can anonymize
raw images to protect the privacy of people and cars.

View Direction: View direction does have a conspicuous
influence on retrieval accuracy. In Fig. 1, the accuracies
calculated from front-view images are higher than those
from side-view images. This phenomenon happens in every
method, indicating that front-view images is less challenging
than side-view images in VPR, as we expected previously.

Next, we provide some in-depth analysis according to the
reasons we hypothesized in Fig. 5(a). We first define that
a query image is successfully retrieved if any of the top 5
retrieval images is within 5 meters of the query image.

Dynamic Objects: Fig. 8 shows the success rate of query
images vs. different anonymization rates. We calculate the
anonymization rate using the percentage of white pixels in
the image. As the anonymization rate increases, the success
rate for the front view increases while the success rate for the
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Fig. 7. We visualize VPR results only for VLAD+SuperPoint, VLAD+SURF, and DBOW, because the result of NetVLAD is very similar to
VLAD+SuperPoint. We randomly picked one location (more locations results in the supplementary). The first row is for the anonymized front-view
query. The second row is for the corresponding raw front-view query. The third row is for the side-view query taken at the same location as the front-view
query. The last row is for the corresponding raw side-view query. The red cross means the location of the retrieval image is not in the distance threshold
(10 meters). We show the top 3 retrievals for each method.

Fig. 8. VPR success rate vs. anonymized rate. The same legend as Fig. 6.

Fig. 9. VPR success rate vs. image blurriness.

side view decreases. We propose a hypothesis for why this
happens: in front view, dynamic objects such as cars and
pedestrians are noisy signals for VPR. After anonymizing
dynamic objects, VPR algorithms focus on the street features,
which increases the success rate. However, in side view, those
dynamic objects may block many street features. A higher
anonymization rate means more street features blocked,
which decreases the success rate.

Motion Blur: Fig. 9 shows the relationship among success
rate, VPR method, view directions, and blurriness. It clearly
shows that side-view images are more challenging than front-
view images, and blurry images are more challenging than
non-blurry ones. Moreover, given the same blurriness condi-
tion, side-view is still more challenging than front-view. We
believe this is also due to the reason we hypothesized before:
front-view contains more view overlaps among neighboring
images, thus better VPR feature matching.

Seasonal Change: In addition, we analyzed the success
rate of query images in different months as shown in Fig. 10.
This result further confirmed in each month our observa-

Fig. 10. VPR success rate vs. query image month.

tion that the side view is more challenging than the front
view. The fluctuations between months also reflect some
season/weather related influences on VPR performance.

V. CONCLUSIONS

After the large-scale experiments and analysis, we can
finally answer our questions with confidence. Are side-view
images more challenging for VPR than front-view ones? Yes,
and the performance drops of all VPR methods are signifi-
cant, although the dataset has no significant spatial/temporal
differences on the distribution of images captured from the
two view directions. Would our data anonymization signif-
icantly affect the performance of existing VPR algorithms?
No, and for some methods, the anonymization could even
bring marginal improvements, potentially due to the removal
of those VPR noises. Our future work includes benchmarking
more VPR methods and with geometric verification.
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